skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dogan, Ayse"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As a pervasive issue, missing data may influence the data modeling performance and lead to more difficulties of completing the desired tasks. Many approaches have been developed for missing data imputation. Recently, by taking advantage of the emerging generative adversarial network (GAN), an effective missing data imputation approach termed generative adversarial imputation nets (GAIN) was developed. However, its modeling architecture may still lead to significant imputation bias. In addition, with the GAN structure, the training process of GAIN may be unstable and the imputation variation may be high. Hence, to address these two limitations, the ensemble GAIN with selective multi-generator (ESM-GAIN) is proposed to improve the imputation accuracy and robustness. The contributions of the proposed ESM-GAIN consist of two aspects: (1) a selective multi-generation framework is proposed to identify high-quality imputations; (2) an ensemble learning framework is incorporated for GAIN imputation to improve the imputation robustness. The effectiveness of the proposed ESM-GAIN is validated by both numerical simulation and two real-world breast cancer datasets. 
    more » « less